Exercise 2.4.1

Use linear stability analysis to classify the fixed points of the following systems. If linear stability analysis fails because $f'(x^*) = 0$, use a graphical argument to decide the stability.

$$\dot{x} = x(1-x)$$

Solution

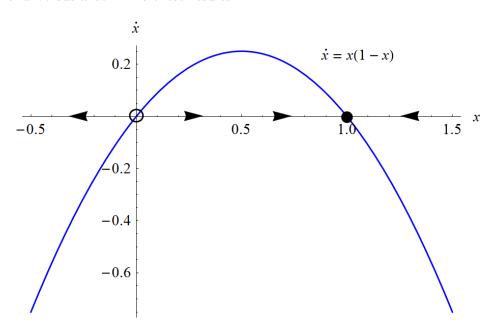
The fixed points occur where $\dot{x} = 0$.

$$x^*(1-x^*) = 0$$

 $x^* = 0$ or $1-x^* = 0$
 $x^* = 0$ or $x^* = 1$

Use linear stability analysis to classify these points.

$$f(x) = x(1-x)$$
$$= x - x^2$$


Differentiate f(x).

$$f'(x) = 1 - 2x$$

As a result,

$$f'(0) = 1 > 0$$
 \Rightarrow $x^* = 0$ is an unstable fixed point.
 $f'(1) = -1 < 0$ \Rightarrow $x^* = 1$ is a stable fixed point.

The graph of \dot{x} versus x confirms these results.

